Mathematik ohne Grenzen – Hauptwettbewerb 2014 Lösungshinweise

Mathématiques SANS Frontières

Aufgabe 1 – Questions de questions – 7 Punkte

Es sind viele Fragen möglich, die Schwierigkeit besteht darin, die Fragen richtig zu kombinieren. Ein Beispiel für eine Lösung mit drei Fragen:

1. Ist die Zahl gerade?

2. Ist sie größer als 3?

3. Ist sie ein Vielfaches von 3?

Aufgabe 2 - Ausgewogen - 5 Punkte

Sei a die Anzahl der Würfel auf A und b die Anzahl der Würfel auf B.

Um die Waage ins Gleichgewicht zu bringen, muss das Gesamtgewicht der Würfel auf beiden Waagschalen dieselbe sein.

Man erhält $8^3 \times a = 12^3 \times b$, und nach Vereinfachen 8a = 27b.

Die kleinsten, von Null verschiedenen möglichen Werte sind a = 27 und b = 8.

Das Gleichgewicht wird also erreicht, wenn man 27 kleine Würfel auf A und 8 große Würfel auf B legt.

<u>Aufgabe 3 – Trockenobst – 7 Punkte</u>

Die 5 kg Äpfel bestehen zu 80% aus Wasser, d.h. es sind 4 kg Wasser und 1 kg Trockenmasse. Nach dem Trocknen ist es immer noch 1 kg Trockenmasse, diese macht nun jedoch 40% der Apfelmasse aus. Der Wasseranteil von 60 % entspricht also 1,5 kg.

Die getrockneten Äpfel wiegen 2,5 kg.

Aufgabe 4 – Bon appétit – 5 Punkte

Es ist einfacher, jeweils zunächst das Volumen zu berechnen, das nach dem Abschneiden übrigbleibt.

	1. Tag	2. Tag	3. Tag	4. Tag	5. Tag	6. Tag	7. Tag	8. Tag	9. Tag	10. Tag
Ausgangsvolumen (cm ³)	10^{3}	93	83	73	63	53	43	33	2^{3}	13
Restvolumen (cm ³)	93	83	73	63	53	43	33	23	13	0
Gegessenes Volumen (cm ³)	271	217	169	127	91	61	37	19	7	1

Aufgabe 5 – Curiosity! – 7 Punkte

Könnte Phobos die Sonne komplett verdecken, wäre sein Durchmesser D nach dem Strahlensatz:

$$\frac{D}{1,4\times10^6} = \frac{6\,000}{2,4\times10^8}$$
, also D ≈ 35 km.

Durch Ausmessen des Durchmessers von Phobos und der Sonne auf dem Photo findet man ein Verhältnis von etwa 4/7 (wenn man für Phobos z.B. 2,4 cm und für die Sonne 4,2 cm misst).

Der tatsächliche Durchmesser von Phobos ist damit ungefähr $35 \times 4/7 = 20$ km.

Aufgabe 6 – Es zählt der Erfolg – 5 Punkte

Die Summe S_n aller Aufgabennummern ist größer als 2014.

Durch schrittweises Aufaddieren (mit oder ohne Taschenrechner) oder mit Hilfe der Summenformel

$$S_n = \frac{n \times (n+1)}{2}$$
 ergibt sich $S_{62} < 2014 < S_{63}$.

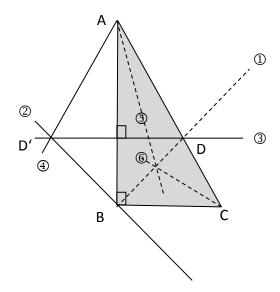
 $S_{63} = 2016$. 2014 = 2016 - 2

Der Wettbewerb bestand aus 63 Fragen und Benjamin hat sich bei der zweiten Frage geirrt.

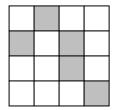
<u>Aufgabe 7 – Allzweck-Dreieck – 7 Punkte</u>.

Es gibt mehrere Lösungsmöglichkeiten; hier eine mögliche Konstruktion:

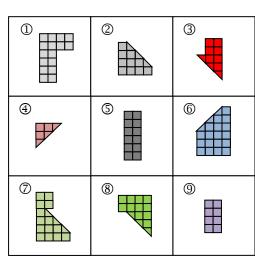
- ①: Die Winkelhalbierende w_b des rechten Winkels erhält man durch Antragen von 45° an AB. w_b schneidet AC in D.
- ② und ③: Spiegelt man w_b an AB (45°), so erhält man mit Hilfe der Orthogonalen zu AB durch D das Spiegelbild D' von D.
- (4): AD' schließt mit AD einen Winkel von 60° ein.
- ⑤: Antragen von 45° an AD' ergibt die Winkelhalbierende w_a (60° 45° = 15°)
- ©: Verbindet man den Schnittpunkt der beiden Winkelhalbierenden mit dem Punkt C erhält man wc



<u>Aufgabe 8 – Graue Zellen – 5 Punkte</u>



Aufgrund der zweiten Spalte ist für das Feld 8 nur eine einzige Form möglich. Ebenso lässt die Diagonale von links oben nach rechts unten für das Feld 9 nur eine einzige Form zu. Damit können die noch fehlenden Felder Schritt für Schritt hergeleitet werden.



<u>Aufgabe 10 – Rotationskörper – 10 Punkte</u>

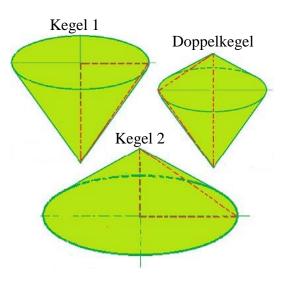
Volumen des 1. Kegels: $\frac{16 \times 12^2 \times \pi}{3} = 768\pi$

Volumen des 2. Kegels: $\frac{12 \times 16^2 \times \pi}{3} = 1024\pi$

Volumen des Doppelkegels:

Man muss zunächst die Länge der dritten Seite des Dreiecks und die Länge der dritten Höhe des Dreiecks berechnen.

$$\frac{20\times 9,6^2\times \pi}{3} = 614,4\pi$$
. Luc hat nicht Recht.



Aufgaben Klasse 10

Aufgabe 11 – Die Einserbande – 5 Punkte

Mithilfe des Taschenrechners ist die Zahl 111 111 leicht zu finden.

Gruppiert man, von links beginnend, die Ziffern von N jeweils als 6er-Pakete, erhält man 335 solche Pakete, gefolgt von vier Einsern.

$$1\ 1111 = 158 \times 7 + 5$$

Der Rest der Division von N durch 7 ist daher 5.

<u>Aufgabe 12 – Ausgetrickst – 7 Punkte</u>

Jan nimmt Würfel A	B schlägt A mit W'keit 1/3	C schlägt A mit W'keit 5/9	D schlägt A mit W'keit 2/3	Lena nimmt Würfel C oder D
Jan nimmt Würfel B	_	C schlägt B mit W'keit 1/3	D schlägt B mit W'keit 1/2	Lena nimmt Würfel A
Jan nimmt Würfel C	_	B schlägt C mit W'keit 2/3	<u> </u>	Lena nimmt Würfel B
Jan nimmt Würfel D		B schlägt D mit W'keit 1/2		Lena nimmt Würfel C

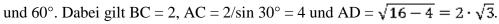
Aufgabe 13 – Abgegrast – 10 Punkte

Im Folgenden sind alle Angaben in m bzw. m^2 .

Die Weidefläche außerhalb des Schienendreiecks lässt sich in 3 Rechtecke und 3 Drittelkreise zerlegen. Die Kreisteile können zu einem Kreis mit Flächeninhalt 4π zusammengesetzt werden Die drei Rechteck haben einen Flächeninhalt von $3 \times 10 \times 2 = 60$.

Die innere Weidefläche besteht aus drei kongruenten Rechtecken und drei kongruenten Drachen.

Der Drachen ABCD besteht aus zwei kongruenten rechtwinkligen Dreiecken mit den Winkeln 30° und 60° Dabei gilt BC = 2 AC = 2/sin 30° = 4 ur



Somit beträgt der Flächeninhalt eines Drachens $4\sqrt{3}$.

 $AD = 2\sqrt{3}$, daher ist $DF = 10 - 4\sqrt{3}$ und der Flächeninhalt des Rechtecks DCEF beträgt $20 - 8\sqrt{3}$.

В

D

Der Inhalt der inneren Weidefläche beträgt also $3 \times 4\sqrt{3} + 3\left(20 - 8\sqrt{3}\right) = 60 - 12\sqrt{3}$.

Insgesamt kann die Ziege also eine Fläche von $4\pi + 60 + 60 - 12\sqrt{3} = 120 + 4\pi - 12\sqrt{3} \approx 111,78$ [m²] abgrasen.

